
Dictionaries

&

Hash Tables

Dictionaries and Hash Tables 2

Unordered Dictionary ADT
• A dictionary stores key-element pairs (k,e), which is called items,

where k is the key and e is the element.

• There are two types of dictionaries:
– Unordered dictionary

– Ordered dictionary

• Main operations of dictionary D: find, insert, remove

– findElement(k), insertItem(k, o), removeElement(k)

– size(), isEmpty()

– keys(), elements()

• Applications:

– address book

– word-definition pairs

– mapping host names to internet addresses (e.g., www.cs16.net to
128.148.34.101)

Dictionaries and Hash Tables 3

Log File
• A log file is a file that records either events that occur in an operating

system or other software runs, or messages between different users of a
communication software. [Wikipedia]

• A log file is a dictionary implemented by means of storing items in an
unsorted sequence

– insertItem takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence

– findElement and removeElement take O(n) time since in the worst
case (the item is not found) we traverse the entire sequence to look
for an item with the given key

• Effective only for dictionaries of

– small size or

– when insertions are the most common operations, while searches
and removals are rarely performed (e.g., historical record of logins
to a workstation)

Dictionary

Dictionaries & Hash Tables 4

insertItem removeElement Findelement

List/Vector O(1) O(n) O(n)

Goal:

All operations run in O(1) time on Average.

Hash Table - based

Dictionaries

Dictionaries and Hash Tables 6

Hash Functions and Hash Tables

• A hash table for a given key type consists of

– Large Array (called table) of size N

– Hash function h

• A hash function is any function that can be used to map a data set of an
arbitrary size to a data set of a fixed size, which falls into the hash table.

• The goal of the hash function is to “disperse” the keys in an apparently
random way.

• A hash function h maps keys of a given type to integers in a fixed interval [0,
N - 1]

– Ex: h(x) = x mod N is a hash function for integer keys

– The integer h(x) is called the hash value of key x

• When implementing a dictionary with a hash table, the goal is to store item (k,
o) at index i = h(k)

Example

Dictionaries & Hash Tables 7

Hash Table of size N=8Hash Function h(x) = x mod N

Add these keys to the hash table:

18 21 43 15 36

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Example

Dictionaries & Hash Tables 8

Hash Table of size N=8Hash Function h(x) = x mod N

Add these keys to the hash table:

18 21 43 15 36

h(18) = 18 mode 8 = 2

h(21) = 21 mode 8 = 5

h(43) = 43 mode 8 = 3

h(15) = 15 mode 8 = 7

h(36) = 36 mode 8 = 2

18

43

36

21

15

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Example

Dictionaries & Hash Tables 9

Hash Table of size N=8Hash Function h(x) = x mod N

Add these keys to the hash table:

18 21 43 15 36

h(18) = 18 mode 8 = 2

h(21) = 21 mode 8 = 5

h(43) = 43 mode 8 = 3

h(15) = 15 mode 8 = 7

h(36) = 36 mode 8 = 4

Now let’s add 10.

h(10) = 10 mode 8 = 2

This is called Collision.

18

43

36

21

15

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

collision

• Two keys may hash to the same slot, which is called a

collision.

• Fortunately, we have effective techniques for

resolving the conflict created by collisions.

• Questions

1. How to design h such that number of collisions is low?

2. How do we handle collisions?

Dictionaries & Hash Tables 10

Hash function

• To achieve a good hashing mechanism, It is
important to have a good hash function with the
following basic requirements:

– Easy to compute: It should be easy to compute and
must not become an algorithm in itself.

– Uniform distribution: It should provide a uniform
distribution across the hash table and should not result
in clustering.

– Less collisions: Collisions occur when pairs of
elements are mapped to the same hash value. These
should be avoided.

Dictionaries & Hash Tables 11

Dictionaries and Hash Tables 14

Hash Functions

• A hash function h(k), consist of two actions

– mapping the key k to an integer, called the hash code,

– and mapping the hash code to an integer within the range

of indices of a array, called the compression map.

The hash code map is applied first, and the compression map is

applied next on the result

h(x) = h2(h1(x))

Hash code map

h1: keys → integers

Compression map

h2: integers → [0, N - 1]

Compression Maps: integers → [0,N-1]
• A good hash function guarantees the probability that two different

keys have the same hash is 1/N.

• The size N of the hash table is usually chosen to be a prime.

– The reason involves number theory and is beyond the scope of this course

Division

• h2 (k) = k mod N

• disadvantage: repeated keys of the form iN + j cause collisions

Multiply, Add and Divide (MAD)

• h2 (k) = (ak + b) mod N

• Where a and b are nonnegative integers

Dictionaries & Hash Tables 15

Dictionaries and Hash Tables 17

Collision Handling
Collisions occur when different elements are mapped to the same cell

Chaining

• each cell in the table points to a linked list of elements that map there

• simple, but requires additional memory outside the table.

Chaining

• The separate chaining rule has one slight

disadvantage:

– it requires the use of an auxiliary data structure-a

list, vector, or sequence-to hold items with

colliding keys

Dictionaries & Hash Tables 18

Dictionaries and Hash Tables 19

Collision Handling
Open Addressing

• the colliding item is placed in a different cell of the table

• no additional memory, but complicates searching/removing

• common types:

1) linear probing,

2) quadratic probing

3) double hashing

Dictionaries and Hash Tables 20

Open Addressing: Linear Probing
• Placing the colliding item in the next (circularly) available table cell

A[(h(k) + i) mod N] for i = 0,1,2,…

• Disadvantage:
– Colliding items cluster together, causing future collisions to cause a longer

sequence of probes (searches for next available cell)

• Example:

– h(x) = x mod 13

– Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

h(18) = 18 mod 13 = 5

41 mod 13 = 2

22 mod 13 = 9

44 mod 13 = 5

59 mod 13 = 7

32 mod 13 = 6

31 mod 13 = 5

73 mod 13 = 8

Dictionaries and Hash Tables 21

Search with Linear Probing

Consider a hash table A that uses linear

probing

findElement(k)

• Start at cell h(k)

• Check consecutive locations until one of

the following occurs

– An item with key k is found, or

– An empty cell is found, or

– N cells have been unsuccessfully

probed

Algorithm findElement(k)

i  h(k)

p  0

repeat

c  A[i]

if c = 

return NO_SUCH_KEY

else if c.key () = k

return c.element()

else

i  (i + 1) mod N

p  p + 1

until p = N

return NO_SUCH_KEY

Example – Delete Problem

18 43 36 21 15

Dictionaries & Hash Tables 22

0 1 2 3 4 5 6 7

1) Insert 26

18 43 36 21 26 15

0 1 2 3 4 5 6 7

2) Delete 18

3) Find 26

Dictionaries and Hash Tables 23

Updates with Linear Probing
A special object, called AVAILABLE, replaces deleted elements

• removeElement(k)

– Search for an item with key k

– If it is found, replace it with item AVAILABLE and return element

– Else, return NO_SUCH_KEY

• insertItem(k, o)

– Throw an exception if the table is full

– Start at cell h(k)

– Search consecutive cells until a cell i is found that is either empty or
stores AVAILABLE

– Store item (k, o) in cell i

Open Addressing: Quadratic

Probing

• Placing the colliding item in

A[(𝒉(𝒌) + 𝑓(𝒊)) mod N] for i = 0,1,2,…

Where 𝑓(𝑖) = 𝑖2

• As with linear probing, the quadratic probing

strategy complicates the removal operation,

• but it does avoid the kinds of clustering

patterns that occur with linear probing.

Dictionaries & Hash Tables 24

Dictionaries and Hash Tables 25

Open Addressing: Double Hashing

• Use a secondary hash function d(k) to place items in first available cell

try A[(h(k) + i*d(k)) mod N] for i = 0,1,2,…

• d(k) cannot have zero values

• The table size N must be a prime to allow probing of all the cells

Dictionaries and Hash Tables 26

Consider a hash table storing integer keys that handles collision with

double hashing

– N = 13

– h(k) = k mod 13

– d(k) = 1 + (k mod 7)

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 44 22 73

0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 5 5

41 2 7 2

22 9 2 9

44 5 3 5 8

59 7 4 7

32 6 5 6

31 5 4 5 9 0

73 8 4 8 12

Dictionaries and Hash Tables 27

Performance of Hashing
• In the worst case, searches, insertions and removals on a hash table take

O(n) time

– occurs when all inserted keys collide

• However, the expected running time of all the dictionary ADT
operations in a hash table is O(1)

• The load factor is the number of keys stored in the hash table divided

by the capacity.

• In other words, The load factor is a measure of how full the hash table

is allowed to get before its capacity is automatically increased.

• So, given a hash table T with m slots that stores n elements, we define

the

load factor 𝛂 = 𝒏/𝒎

• With the chaining n could be greater than m and so α might be ≥ 1.

• So, with open addressing, at most one element occupies each slot, and

thus 𝑛 ≤ 𝑚, which implies α ≤ 1.

Chaining vs. Open Addressing

Chaining

• Less sensitive to hash functions and load

factor

• Supports a > 100%

Open Addressing

• Requires careful selection of hash

function to avoid clustering

• Degrades past a > 70%

• Can’t support a > 100%

• Better memory usage

Dictionaries & Hash Tables 29







0

1

2

3

4 b c

a

a

c

b

0

1

2

3

4

h(a) = 1 h(b) = 4 h(c) = 4

Exercises

• You are given an array A of integers. Determine the

integer that occurs most frequently in A.

• Demonstrate what happens when we insert the keys

5, 28, 19, 15, 20, 33, 12, 17,10 into a hash table with

collisions resolved by chaining. Let the table have 9

slots, and let the hash function be ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 9.

Dictionaries & Hash Tables 30

Exercises

• Professor Marley hypothesizes that he can obtain substantial

performance gains by modifying the chaining scheme to keep

each list in sorted order. How does the professor's modification

affect the running time for successful searches, unsuccessful

searches, insertions, and deletions?

• Consider inserting the keys 10, 22,31, 4, 15, 28, 17, 88, 59 into

a hash table of length m=11 using open addressing with the

auxiliary hash function ℎ 𝑘 = 𝑘. Illustrate the result of

inserting these keys using linear probing, using quadratic.

probing, and using double hashing with ℎ1(𝑘) = 𝑘 and

ℎ2 𝑘 = 1 + (𝑘 𝑚𝑜𝑑 𝑚 − 1).

Dictionaries & Hash Tables 31

